Leetcode
  • Leetcode
  • 1. Two Sum
  • 7. Reverse Integer
  • 9. Palindrome Number
  • 13. Roman to Integer
  • 20. Valid Parentheses
  • 21. Merge Two Sorted Lists
  • 26. Remove Duplicates from Sorted Array
  • 27. Remove Element
  • 28. Implement strStr()
  • 35. Search Insert Position
  • 53. Maximum Subarray
  • 58. Length of Last Word
  • 66. Plus One
  • 876. Middle of the Linked List
  • 67. Add Binary
  • 69. Sqrt(x)
  • 83. Remove Duplicates from Sorted List
  • 14. Longest Common Prefix
  • 70. Climbing Stairs
  • 100. Same Tree
  • 101. Symmetric Tree
  • 104. Maximum Depth of Binary Tree
  • Untitled
Powered by GitBook
On this page

53. Maximum Subarray

Previous35. Search Insert PositionNext58. Length of Last Word

Last updated 6 years ago

Given an integer array nums, find the contiguous subarray (containing at least one number) which has the largest sum and return its sum.

Example:

Input: [-2,1,-3,4,-1,2,1,-5,4],
Output: 6
Explanation: [4,-1,2,1] has the largest sum = 6.

Follow up:

If you have figured out the O(n) solution, try coding another solution using the divide and conquer approach, which is more subtle.

Solution1: (Dynamic Programming)

MaxSum={A[i], ri−1+A[i]}\text{MaxSum}=\{A[i],\ r_{i-1}+A[i]\}MaxSum={A[i], ri−1​+A[i]}

class Solution(object):
    def maxSubArray(self, nums):
        """
        :type nums: List[int]
        :rtype: int
        """
        CurrentSum = nums[0]
        MaxSum = nums[0]
        for i in range(1, len(nums), 1):
            if nums[i] + CurrentSum > nums[i]:
                CurrentSum = nums[i] + CurrentSum
            else:
                CurrentSum = nums[i]
            if CurrentSum > MaxSum:
                MaxSum = CurrentSum
        return MaxSum

Solution2:

class Solution(object):
    def maxSubArray(self, nums):
        """
        :type nums: List[int]
        :rtype: int
        """
        self.nums = nums
        return self.findmax(0, len(nums)-1)
    
    def findmax(self, start, end):
        if start == end:
            return self.nums[start]
        mid = (start + end)/2
        maxleft = self.findmax(start, mid)
        maxright = self.findmax(mid+1, end)
        maxmid = self.nums[mid]
        current = self.nums[mid]
        for i in range(mid-1, start-1, -1):
            current += self.nums[i]
            if current > maxmid:
                maxmid = current
        current = maxmid
        for i in range(mid+1, end+1, 1):
            current += self.nums[i]
            if current > maxmid:
                maxmid = current
        return max(maxleft, maxmid, maxright)
https://leetcode.com/problems/maximum-subarray/description/