Data Structure
  • 資料結構自學筆記
  • 1 - Stack & Queue
    • 1.1 - Stack
    • 1.2 - Queue
    • 1.3 - Stack and Queue
  • 2 - Tree & Binary Tree
    • 2.1 - Tree
    • 2.2 - Binary Tree
    • 2.3 - Binary Tree Traversal
    • 2.4 - Binary Search Tree
    • 2.5 - Heap
    • 2.6 - Thread Binary Tree
    • 2.7 - Tree and Binary Tree Conversion
    • 2.8 Advanced Trees
      • 2.8.1 - Min-Max Heap
      • 2.8.2 - Deap
      • 2.8.3 - Symmetric Min-Max Heap
      • 2.8.4 - Extended Binary Tree
      • 2.8.5 - AVL Tree
      • 2.8.6 - M-Way Search Tree
      • 2.8.7 - B Tree
      • 2.8.8 - Red-Black Tree
      • 2.8.9 - Optimal Binary Search Tree
      • 2.8.10 - Splay Tree
      • 2.8.11 - Leftest Heap
      • 2.8.12 - Binomial Heap
  • 3 - Search & Sort
    • 3.1 - Searching
    • 3.2 - Elementary Sorting
      • 3.2.1 - Insertion Sort
      • 3.2.2 - Selection Sort
      • 3.2.3 - Bubble Sort
      • 3.2.4 - Shell Sort
    • 3.3 - Sophisticated Sorting
      • 3.3.1 - Quick Sort
      • 3.3.2 - Merge Sort
      • 3.3.3 - Heap Sort
      • 3.3.4 - Radix Sort
      • 3.3.5 - Bucket Sort
      • 3.3.6 - Counting Sort
    • 3.4 - Summary
  • 4 - Graph
    • 4.1 - Intro
    • 4.2 - Graph Traversal
    • 4.3 - Spanning Tree
      • 4.3.1 - Kruskal's algorithm
      • 4.3.2 - Prim's algorithm
      • 4.3.3 - Sollin's algorithm
    • 4.4 - Shortest Path Length
      • 4.4.1 - Dijkstra's algorithm
      • 4.4.2 - Bellman-Ford algorithm
      • 4.4.3 - Floyd-Warshall algorithm
    • 4.5 - AOV Network
    • 4.6 - AOE Network
    • 4.7 - Others
Powered by GitBook
On this page
  • 1. 演算法
  • 2. 性質
  1. 3 - Search & Sort
  2. 3.2 - Elementary Sorting

3.2.2 - Selection Sort

Previous3.2.1 - Insertion SortNext3.2.3 - Bubble Sort

Last updated 6 years ago

1. 演算法

從第iii筆到第nnn筆資料中挑出最小值,與第iii筆資料交換。

void Sort(char *arr){
    int n = strlen(arr);
    int min;
    for (int i = 0; i < n; i++){
        min = i;
        for (int j=i; j < n; j++){   //尋找最小值
            if (arr[j] < arr[min]){
                min = j;
            }
        }
        if (min != i) {     //與最小值交換
            int temp = arr[min];
            arr[min] = arr[i];
            arr[i] = temp;
        }
    }
}

演算法分析:

2. 性質

  • Space Complexity: O(1)

Selection sorting is a unstable sorting method.

input={5,3,8,2,6}input = \{5, 3, 8, 2, 6\}input={5,3,8,2,6}

i=0, min=2, ⇒2‾,3,8,5‾,6i=1, min=3, ⇒2,3‾,8,5,6i=2, min=5, ⇒2,3,5‾,8‾,6i=3, min=6, ⇒2,3,5,6‾,8‾i=0,\ min=2,\ \Rightarrow \underline{2},3, 8, \underline{5}, 6 \\ i=1,\ min=3,\ \Rightarrow 2,\underline{3}, 8, 5, 6 \\ i=2,\ min=5,\ \Rightarrow 2,3, \underline{5}, \underline{8}, 6 \\ i=3,\ min=6,\ \Rightarrow 2,3, 5, \underline{6}, \underline{8}i=0, min=2, ⇒2​,3,8,5​,6i=1, min=3, ⇒2,3​,8,5,6i=2, min=5, ⇒2,3,5​,8​,6i=3, min=6, ⇒2,3,5,6​,8​

Time Complexity: O(n2)O(n^2)O(n2)

比較次數= (n−1)+(n−2)+...+1=n(n−1)2(n-1)+(n-2)+...+1=\frac{n(n-1)}{2}(n−1)+(n−2)+...+1=2n(n−1)​

5, 5∗, 3⇒3, 5∗, 55,\ 5^*,\ 3 \Rightarrow 3,\ 5^*,\ 55, 5∗, 3⇒3, 5∗, 5