Data Structure
  • 資料結構自學筆記
  • 1 - Stack & Queue
    • 1.1 - Stack
    • 1.2 - Queue
    • 1.3 - Stack and Queue
  • 2 - Tree & Binary Tree
    • 2.1 - Tree
    • 2.2 - Binary Tree
    • 2.3 - Binary Tree Traversal
    • 2.4 - Binary Search Tree
    • 2.5 - Heap
    • 2.6 - Thread Binary Tree
    • 2.7 - Tree and Binary Tree Conversion
    • 2.8 Advanced Trees
      • 2.8.1 - Min-Max Heap
      • 2.8.2 - Deap
      • 2.8.3 - Symmetric Min-Max Heap
      • 2.8.4 - Extended Binary Tree
      • 2.8.5 - AVL Tree
      • 2.8.6 - M-Way Search Tree
      • 2.8.7 - B Tree
      • 2.8.8 - Red-Black Tree
      • 2.8.9 - Optimal Binary Search Tree
      • 2.8.10 - Splay Tree
      • 2.8.11 - Leftest Heap
      • 2.8.12 - Binomial Heap
  • 3 - Search & Sort
    • 3.1 - Searching
    • 3.2 - Elementary Sorting
      • 3.2.1 - Insertion Sort
      • 3.2.2 - Selection Sort
      • 3.2.3 - Bubble Sort
      • 3.2.4 - Shell Sort
    • 3.3 - Sophisticated Sorting
      • 3.3.1 - Quick Sort
      • 3.3.2 - Merge Sort
      • 3.3.3 - Heap Sort
      • 3.3.4 - Radix Sort
      • 3.3.5 - Bucket Sort
      • 3.3.6 - Counting Sort
    • 3.4 - Summary
  • 4 - Graph
    • 4.1 - Intro
    • 4.2 - Graph Traversal
    • 4.3 - Spanning Tree
      • 4.3.1 - Kruskal's algorithm
      • 4.3.2 - Prim's algorithm
      • 4.3.3 - Sollin's algorithm
    • 4.4 - Shortest Path Length
      • 4.4.1 - Dijkstra's algorithm
      • 4.4.2 - Bellman-Ford algorithm
      • 4.4.3 - Floyd-Warshall algorithm
    • 4.5 - AOV Network
    • 4.6 - AOE Network
    • 4.7 - Others
Powered by GitBook
On this page
  • 1. 演算法
  • 2. 性質
  1. 3 - Search & Sort
  2. 3.3 - Sophisticated Sorting

3.3.6 - Counting Sort

1. 演算法

  1. 計算每種資料(鍵值)的出現次數,並紀錄在陣列Count[]中

  2. 計算每種資料(鍵值)在Count[]的起始位置,並記錄在Start[]中

  3. 依Start[]照將排序結果輸出

    int max = 0;
    int n = strlen(arr);
    // 尋找最大值
    for (int i = 0;i<n;i++)
        if (arr[i]>max) 
            max = arr[i];
            
    // counting計算出現次數
    char count[max];
    char start[max];
    for (int i = 0; i<n; i++)
        count[i] = 0;
    for (int i = 0; i<n; i++)
        count[arr[i]-1]++; //為了配合陣列的index
        
    // 記錄起始位置
    start[0]=1;
    for (int i = 1; i<max; i++)
        start[i] = start[i-1]+count[i-1];
        
    char output[n];
    for (int i = 0; i<n; i++){
        output[start[arr[i]-1]-1] = arr[i];
        start[arr[i]-1]++;
    }

2. 性質

Counting sorting is a unstable sorting method.

Previous3.3.5 - Bucket SortNext3.4 - Summary

Last updated 6 years ago

Time Complexity: O(n+k)O(n+k)O(n+k)

O(k)+O(n)+O(k)+O(n)O(k)+O(n)+O(k)+O(n)O(k)+O(n)+O(k)+O(n)

Space Complexity: O(n+k)O(n+k)O(n+k)