Data Structure
  • 資料結構自學筆記
  • 1 - Stack & Queue
    • 1.1 - Stack
    • 1.2 - Queue
    • 1.3 - Stack and Queue
  • 2 - Tree & Binary Tree
    • 2.1 - Tree
    • 2.2 - Binary Tree
    • 2.3 - Binary Tree Traversal
    • 2.4 - Binary Search Tree
    • 2.5 - Heap
    • 2.6 - Thread Binary Tree
    • 2.7 - Tree and Binary Tree Conversion
    • 2.8 Advanced Trees
      • 2.8.1 - Min-Max Heap
      • 2.8.2 - Deap
      • 2.8.3 - Symmetric Min-Max Heap
      • 2.8.4 - Extended Binary Tree
      • 2.8.5 - AVL Tree
      • 2.8.6 - M-Way Search Tree
      • 2.8.7 - B Tree
      • 2.8.8 - Red-Black Tree
      • 2.8.9 - Optimal Binary Search Tree
      • 2.8.10 - Splay Tree
      • 2.8.11 - Leftest Heap
      • 2.8.12 - Binomial Heap
  • 3 - Search & Sort
    • 3.1 - Searching
    • 3.2 - Elementary Sorting
      • 3.2.1 - Insertion Sort
      • 3.2.2 - Selection Sort
      • 3.2.3 - Bubble Sort
      • 3.2.4 - Shell Sort
    • 3.3 - Sophisticated Sorting
      • 3.3.1 - Quick Sort
      • 3.3.2 - Merge Sort
      • 3.3.3 - Heap Sort
      • 3.3.4 - Radix Sort
      • 3.3.5 - Bucket Sort
      • 3.3.6 - Counting Sort
    • 3.4 - Summary
  • 4 - Graph
    • 4.1 - Intro
    • 4.2 - Graph Traversal
    • 4.3 - Spanning Tree
      • 4.3.1 - Kruskal's algorithm
      • 4.3.2 - Prim's algorithm
      • 4.3.3 - Sollin's algorithm
    • 4.4 - Shortest Path Length
      • 4.4.1 - Dijkstra's algorithm
      • 4.4.2 - Bellman-Ford algorithm
      • 4.4.3 - Floyd-Warshall algorithm
    • 4.5 - AOV Network
    • 4.6 - AOE Network
    • 4.7 - Others
Powered by GitBook
On this page
  • 1. 演算法
  • 2. 性質
  1. 3 - Search & Sort
  2. 3.3 - Sophisticated Sorting

3.3.3 - Heap Sort

Previous3.3.2 - Merge SortNext3.3.4 - Radix Sort

Last updated 6 years ago

1. 演算法

將{5, 3, 2, 1, 7, 8, 9, 10}

  1. 將資料以Bottom-Up方式建立Max-Heap

  2. 執行Delete-Max

    1. SWAP(Root, the last node)

    2. 刪除最大值

    3. 將剩下的Heap調整為Max-Heap

output=10

output=9

void HeapSort(char *heap){
    int n = strlen(heap);
    //build heap
    for (int i = n/2-1; i>=0; i--)  //i從最後一個父點開始
        AdjustBottomUp(heap, i, n-1);
    //delete max
    for (int i = n-1;i>0;i--){
        Swap(&heap[0], &heap[i]); //將max移到最後
        for (int j = i/2-1; j>=0; j--)
            AdjustBottomUp(heap, j, i-1);
    }
}

2. 性質

  • Time Complexity: O(nlogn)O(nlogn)O(nlogn)

    1. 以Bottom-Up建立Heap共花O(n)O(n)O(n)

    2. 執行Delete-Max,每一回合共花 O(logn)O(logn)O(logn),共有n回合

  • Space Complexity: O(1)O(1)O(1)

Heap sorting is a unstable sorting method.