Data Structure
  • 資料結構自學筆記
  • 1 - Stack & Queue
    • 1.1 - Stack
    • 1.2 - Queue
    • 1.3 - Stack and Queue
  • 2 - Tree & Binary Tree
    • 2.1 - Tree
    • 2.2 - Binary Tree
    • 2.3 - Binary Tree Traversal
    • 2.4 - Binary Search Tree
    • 2.5 - Heap
    • 2.6 - Thread Binary Tree
    • 2.7 - Tree and Binary Tree Conversion
    • 2.8 Advanced Trees
      • 2.8.1 - Min-Max Heap
      • 2.8.2 - Deap
      • 2.8.3 - Symmetric Min-Max Heap
      • 2.8.4 - Extended Binary Tree
      • 2.8.5 - AVL Tree
      • 2.8.6 - M-Way Search Tree
      • 2.8.7 - B Tree
      • 2.8.8 - Red-Black Tree
      • 2.8.9 - Optimal Binary Search Tree
      • 2.8.10 - Splay Tree
      • 2.8.11 - Leftest Heap
      • 2.8.12 - Binomial Heap
  • 3 - Search & Sort
    • 3.1 - Searching
    • 3.2 - Elementary Sorting
      • 3.2.1 - Insertion Sort
      • 3.2.2 - Selection Sort
      • 3.2.3 - Bubble Sort
      • 3.2.4 - Shell Sort
    • 3.3 - Sophisticated Sorting
      • 3.3.1 - Quick Sort
      • 3.3.2 - Merge Sort
      • 3.3.3 - Heap Sort
      • 3.3.4 - Radix Sort
      • 3.3.5 - Bucket Sort
      • 3.3.6 - Counting Sort
    • 3.4 - Summary
  • 4 - Graph
    • 4.1 - Intro
    • 4.2 - Graph Traversal
    • 4.3 - Spanning Tree
      • 4.3.1 - Kruskal's algorithm
      • 4.3.2 - Prim's algorithm
      • 4.3.3 - Sollin's algorithm
    • 4.4 - Shortest Path Length
      • 4.4.1 - Dijkstra's algorithm
      • 4.4.2 - Bellman-Ford algorithm
      • 4.4.3 - Floyd-Warshall algorithm
    • 4.5 - AOV Network
    • 4.6 - AOE Network
    • 4.7 - Others
Powered by GitBook
On this page
  • Articulation Point
  • Biconnected Graph
  • Biconnected Component
  1. 4 - Graph

4.7 - Others

Articulation Point, Biconnected Graph, Biconnected Component

Previous4.6 - AOE Network

Last updated 6 years ago

Articulation Point

在connected undirected graph中,若將某vertex及其連接的邊刪除後會造成剩下的subgraph變成unconnected,此種vertex稱為articulation point。

如何求出articulation points?

  1. 求出各點的DFS number order

  2. 畫出DFS spaning tree,並標示出back edge

  3. 算出low值

    low(x)=min⁡{DFN(x), DFN(y)}low(x)=\min\{DFN(x),\ DFN(y)\}low(x)=min{DFN(x), DFN(y)},y為包含x的後代子孫經過最多一條back edge所到達的頂點編號。

  4. 判斷articulation point法則

    1. 若root有2個子點,則root是articulation point

    2. 針對其他點x,若low(x的子點)≥DFN(x),則x是articulation point

e.g.

  1. (不一定是此順序)

  2. 0, 4, 8, 9 ⇒\Rightarrow⇒無子點,不是articulation point

    3⇒\Rightarrow⇒Root有兩個子點

    low(0)=2

    low(1)=0

    low(2)=0

    low(3)=0

    low(4)=0

    low(5)=5

    low(6)=5

    low(7)=5

    low(8)=9

    low(9)=8

articulation point: {1, 3, 5, 7}

Biconnected Graph

沒有任何articulation points的connected undirected graph稱為biconnected graph。

e.g.

Biconnected Component

Undirected graph GGG, G′G'G′ is a biconnected component of GGG if G′G'G′ satisfies:

  1. G′G'G′ is biconnected subgraph

  2. There is no connected subgraph of GGG included G′G'G′

e.g.

biconnected components: